200 research outputs found

    Characterizing Subtypes and Neural Correlates of Receptive Aprosodia in Acute Right Hemisphere Stroke

    Get PDF
    Introduction: Speakers naturally produce prosodic variations depending on their emotional state. Receptive prosody has several processing stages. We aimed to conduct lesion-symptom mapping to determine whether damage (core infarct or hypoperfusion) to specific brain areas was associated with receptive aprosodia or with impairment at different processing stages in individuals with acute right hemisphere stroke. We also aimed to determine whether different subtypes of receptive aprosodia exist that are characterized by distinctive behavioral performance patterns. Methods: Twenty patients with receptive aprosodia following right hemisphere ischemic stroke were enrolled within five days of stroke; clinical imaging was acquired. Participants completed tests of receptive emotional prosody, and tests of each stage of prosodic processing (Stage 1: acoustic analysis; Stage 2: analyzing abstract representations of acoustic characteristics that convey emotion; Stage 3: semantic processing). Emotional facial recognition was also assessed. LASSO regression was used to identify predictors of performance on each behavioral task. Predictors entered into each model included 14 right hemisphere regions, hypoperfusion in four vascular territories as measured using FLAIR hyperintense vessel ratings, lesion volume, age, and education. A k-medoid cluster analysis was used to identify different subtypes of receptive aprosodia based on performance on the behavioral tasks. Results: Impaired receptive emotional prosody and impaired emotional facial expression recognition were both predicted by greater percent damage to the caudate. The k-medoid cluster analysis identified three different subtypes of aprosodia. One group was primarily impaired on Stage 1 processing and primarily had frontotemporal lesions. The second group had a domain-general emotion recognition impairment and maximal lesion overlap in subcortical areas. Finally, the third group was characterized by a Stage 2 processing deficit and had lesion overlap in posterior regions. Conclusions: Subcortical structures, particularly the caudate, play an important role in emotional prosody comprehension. Receptive aprosodia can result from impairments at different processing stages

    Explicit Training to Improve Affective Prosody Recognition in Adults with Acute Right Hemisphere Stroke

    Get PDF
    Difficulty recognizing affective prosody (receptive aprosodia) can occur following right hemisphere damage (RHD). Not all individuals spontaneously recover their ability to recognize affective prosody, warranting behavioral intervention. However, there is a dearth of evidence-based receptive aprosodia treatment research in this clinical population. The purpose of the current study was to investigate an explicit training protocol targeting affective prosody recognition in adults with RHD and receptive aprosodia. Eighteen adults with receptive aprosodia due to acute RHD completed affective prosody recognition before and after a short training session that targeted proposed underlying perceptual and conceptual processes. Behavioral impairment and lesion characteristics were investigated as possible influences on training effectiveness. Affective prosody recognition improved following training, and recognition accuracy was higher for pseudo- vs. realword sentences. Perceptual deficits were associated with the most posterior infarcts, conceptual deficits were associated with frontal infarcts, and a combination of perceptual-conceptual deficits were related to temporoparietal and subcortical infarcts. Several right hemisphere ventral stream regions and pathways along with frontal and parietal hypoperfusion predicted training effectiveness. Explicit acoustic-prosodic-emotion training improves affective prosody recognition, but it may not be appropriate for everyone. Factors such as linguistic context and lesion location should be considered when planning prosody training

    Neural Regions Underlying Object and Action Naming: Complementary Evidence from Acute Stroke and Primary Progressive Aphasia

    Get PDF
    Background: Naming impairment is commonly noted in individuals with aphasia. However, object naming receives more attention than action naming. Furthermore, most studies include participants with aphasia due to only one aetiology, commonly stroke. We developed a new assessment, the Hopkins Action Naming Assessment (HANA), to evaluate action naming impairments. Methods \u3e& Procedures: Participants (N = 138 PPA, N = 37 acute stroke) completed the BNT and HANA. Behavioural performance was compared. A subset of participants (N = 31 PPA, N = 37 acute stroke) provided neuroimaging data. The whole brain was automatically segmented into regions of interest (ROIs). For participants with PPA, the image variables were the ROI volumes, normalised by brain volume. For participants with acute stroke, the image variables were the percentage of each ROI that was lesioned. The relationship between ROIs likely to be involved in naming performance was modelled with LASSO regression. Outcomes & Results: Behavioural results showed a double dissociation in performance: in each group, some participants displayed intact performance relative to healthy controls on actions but not objects and/or significantly better performance on actions than objects, while others showed the opposite pattern. These results support the need to assess both objects and actions when evaluating naming deficits. Neuroimaging results identified different regions associated with object vs. action naming, implicating overlapping but distinct networks of regions. Furthermore, results differed for participants with PPA vs. acute stroke, indicating that critical information may be missed when only one aetiology is considered. Conclusions: Overall, the study provides a more comprehensive picture of the neural bases of naming, underscoring the importance of assessing both objects and actions and considering different aetiologies of damage. It demonstrates the HANA\u27s utility

    Changes in task-based effective connectivity in language networks following rehabilitation in post-stroke patients with aphasia

    Get PDF
    In this study, we examined regions in the left and right hemisphere language network that were altered in terms of the underlying neural activation and effective connectivity subsequent to language rehabilitation. Eight persons with chronic post-stroke aphasia and eight normal controls participated in the current study. Patients received a 10 week semantic feature-based rehabilitation program to improve their skills. Therapy was provided on atypical examples of one trained category while two control categories were monitored; the categories were counterbalanced across patients. In each fMRI session, two experimental tasks were conducted: (a) picture naming and (b) semantic feature verification of trained and untrained categories. Analysis of treatment effect sizes revealed that all patients showed greater improvements on the trained category relative to untrained categories. Results from this study show remarkable patterns of consistency despite the inherent variability in lesion size and activation patterns across patients. Across patients, activation that emerged as a function of rehabilitation on the trained category included bilateral IFG, bilateral SFG, LMFG, and LPCG for picture naming; and bilateral IFG, bilateral MFG, LSFG, and bilateral MTG for semantic feature verification. Analysis of effective connectivity using Dynamic Causal Modeling (DCM) indicated that LIFG was the consistently significantly modulated region after rehabilitation across participants. These results indicate that language networks in patients with aphasia resemble normal language control networks and that this similarity is accentuated by rehabilitation.The funding for this project comes from NIDCD/NIH 1P50DC012283 and NIDCD/NIH 1K18DC011517. (1P50DC012283 - NIDCD/NIH; 1K18DC011517 - NIDCD/NIH)Published versio

    Neural Correlates of Syntactic Comprehension: A Longitudinal Study

    Get PDF
    Broca’s area is frequently implicated in sentence comprehension but its specific role is debated. Most lesion studies have investigated deficits at the chronic stage. We aimed (1) to use acute imaging to predict which left hemisphere stroke patients will recover sentence comprehension; and (2) to better understand the role of Broca’s area in sentence comprehension by investigating acute deficits prior to functional reorganization. We assessed comprehension of canonical and noncanonical sentences in 15 patients with left hemisphere stroke at acute and chronic stages. LASSO regression was used to conduct lesion symptom mapping analyses. Patients with more severe word-level comprehension deficits and a greater proportion of damage to supramarginal gyrus and superior longitudinal fasciculus were likely to experience acute deficits prior to functional reorganization. Broca’s area was only implicated in chronic deficits. We propose that when temporoparietal regions are damaged, intact Broca’s area can support syntactic processing after functional reorganization occurs

    Quantification of lactoyl-CoA (lactyl-CoA) by liquid chromatography mass spectrometry in mammalian cells and tissues.

    Get PDF
    Lysine lactoylation is a recently described protein post-translational modification (PTM). However, the biochemical pathways responsible for this acylation remain unclear. Two metabolite-dependent mechanisms have been proposed: enzymatic histone lysine lactoylation derived from lactoyl-coenzyme A (lactoyl-CoA, also termed lactyl-CoA), and non-enzymatic lysine lactoylation resulting from acyl-transfer via lactoyl-glutathione. While the former has precedent in the form of enzyme-catalysed lysine acylation, the lactoyl-CoA metabolite has not been previously quantified in mammalian systems. Here, we use liquid chromatography-high-resolution mass spectrometry (LC-HRMS) together with a synthetic standard to detect and validate the presence of lactoyl-CoA in cell and tissue samples. Conducting a retrospective analysis of data from previously analysed samples revealed the presence of lactoyl-CoA in diverse cell and tissue contexts. In addition, we describe a biosynthetic route to generate 13C315N1-isotopically labelled lactoyl-CoA, providing a co-eluting internal standard for analysis of this metabolite. We estimate lactoyl-CoA concentrations of 1.14 × 10-8 pmol per cell in cell culture and 0.0172 pmol mg-1 tissue wet weight in mouse heart. These levels are similar to crotonyl-CoA, but between 20 and 350 times lower than predominant acyl-CoAs such as acetyl-, propionyl- and succinyl-CoA. Overall our studies provide the first quantitative measurements of lactoyl-CoA in metazoans, and provide a methodological foundation for the interrogation of this novel metabolite in biology and disease

    Dysfunctional Tissue Correlates of Unrelated Naming Errors in Acute Left Hemisphere Stroke

    Get PDF
    Most naming error lesion-symptom mapping (LSM) studies have focused on semantic and/or phonological errors. Anomic individuals also produce unrelated word errors, which may be linked to semantic or modality-independent lexical deficits. To investigate the neural underpinnings of rarely-studied unrelated errors, we conducted LSM analyses in 100 individuals hospitalised with a left hemisphere stroke who completed imaging protocols and language assessments. We used least absolute shrinkage and selection operator regression to capture relationships between naming errors and dysfunctional brain tissue metrics (regional damage or hypoperfusion in vascular territories) in two groups: participants with and without impaired single-word auditory comprehension. Hypoperfusion—particularly within the parietal lobe—was an important error predictor, especially for the unimpaired group. In both groups, higher unrelated error proportions were associated with primarily ventral stream damage, the language route critical for processing meaning. Nonetheless, brain metrics implicated in unrelated errors were distinct from semantic error correlates

    Cluster M Mycobacteriophages Bongo, PegLeg, and Rey with Unusually Large Repertoires of tRNA Isotopes

    Full text link
    Genomic analysis of a large set of phages infecting the common hostMycobacterium smegmatis mc2155 shows that they span considerable genetic diversity. There are more than 20 distinct types that lack nucleotide similarity with each other, and there is considerable diversity within most of the groups. Three newly isolated temperate mycobacteriophages, Bongo, PegLeg, and Rey, constitute a new group (cluster M), with the closely related phages Bongo and PegLeg forming subcluster M1 and the more distantly related Rey forming subcluster M2. The cluster M mycobacteriophages have siphoviral morphologies with unusually long tails, are homoimmune, and have larger than average genomes (80.2 to 83.7 kbp). They exhibit a variety of features not previously described in other mycobacteriophages, including noncanonical genome architectures and several unusual sets of conserved repeated sequences suggesting novel regulatory systems for both transcription and translation. In addition to containing transfer-messenger RNA and RtcB-like RNA ligase genes, their genomes encode 21 to 24 tRNA genes encompassing complete or nearly complete sets of isotypes. We predict that these tRNAs are used in late lytic growth, likely compensating for the degradation or inadequacy of host tRNAs. They may represent a complete set of tRNAs necessary for late lytic growth, especially when taken together with the apparent lack of codons in the same late genes that correspond to tRNAs that the genomes of the phages do not obviously encode

    Resting state correlates of picture description informativeness in left vs. right hemisphere chronic stroke

    Get PDF
    IntroductionDespite a growing emphasis on discourse processing in clinical neuroscience, relatively little is known about the neurobiology of discourse production impairments. Individuals with a history of left or right hemisphere stroke can exhibit difficulty with communicating meaningful discourse content, which implies both cerebral hemispheres play a role in this skill. However, the extent to which successful production of discourse content relies on network connections within domain-specific vs. domain-general networks in either hemisphere is unknown.MethodsIn this study, 45 individuals with a history of either left or right hemisphere stroke completed resting state fMRI and the Cookie Theft picture description task.ResultsParticipants did not differ in the total number of content units or the percentage of interpretative content units they produced. Stroke survivors with left hemisphere damage produced significantly fewer content units per second than individuals with right hemisphere stroke. Intrinsic connectivity of the left language network was significantly weaker in the left compared to the right hemisphere stroke group for specific connections. Greater efficiency of communication of picture scene content was associated with stronger left but weaker right frontotemporal connectivity of the language network in patients with a history of left hemisphere (but not right hemisphere) stroke. No significant relationships were found between picture description measures and connectivity of the dorsal attention, default mode, or salience networks or with connections between language and other network regions.DiscussionThese findings add to prior behavioral studies of picture description skills in stroke survivors and provide insight into the role of the language network vs. other intrinsic networks during discourse production
    • …
    corecore